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ABSTRACT 

Degradation of s i l i c o n  and GaAs s o l a r  cells due t o  exposures t o  low-energy 
proton and e l ec t ron  environments and annealing d a t a  f o r  these  c e l l s  are dis- 
cussed. Degradation of s i l i c o n  c e l l s  i n  simultaneously combined e lec t ron  and 
low-energy proton environments and previous experimental work is  summarized 
and evaluated. The de f i c i enc ie s  i n  cur ren t  s o l a r  a r r ay  damage predic t ion  
techniques ind ica ted  by these  da t a  and t h e  relevance of these de f i c i enc ie s  t o  
s p e c i f i c  missions such as intermediate a l t i t u d e  o r b i t s  and o r b i t a l  t r a n s f e r  
vehicles using s o l a r  e l e c t r i c  propulsion systems are discussed. 

INTRODUCTION 

The concept of l a rge  s o l a r  power s t a t i o n s  has recent ly  increased i n t e r e s t  
i n  the annealing of r a d i a t i o n  damage i n  space. The cost  and weight of such 
systems make i t  des i r ab le  t o  launch them i n t o  a low e a r t h  o r b i t  (LEO) and then 
t r a n s f e r  them t o  geosynchronous e a r t h  o r b i t  (GEO). However, such a t r a n s f e r ,  
i f  powered by ion  t h r u s t e r  engines, takes t i m e s  on the  order of a few months. 
This t i m e ,  which is  spent i n  the  trapped proton and e l ec t ron  b e l t s ,  r e s u l t s  i n  
severe e l e c t r i c a l  power output degradation. Further, o ther  missions f l y i n g  
intermediate a l t i t u d e  o r b i t s  (< 10,000 nmi) o r  e l l i p t i c a l  o r b i t s  must pass  
through severe  environments o f e l e c t r o n s  and protons. 
t o  be a b l e  t o  anneal t h e  cells and r e s t o r e  t h e i r  power generating c a p a b i l i t i e s .  
It is  the  purpose of t h i s  paper t o  1) look a t  t h e  f e a s i b i l i t y  of such annealing, 
2)  consider t h e  e f f e c t s  on damage level of combined environments of e lec t rons  
and protons such as those encountered i n  such intermediate a l t i t u d e  o r b i t s ,  
3) discuss t h e  adequacy of cur ren t  pred ic t ion  techniques f o r  pred ic t ing  degrada- 
t i o n  during such missions, and 4 )  t o  assess the  impact of any synergisms be- 
tween simultaneous e l ec t ron  and proton exposures on annealing behavior and 
mission l i f e t ime .  

Thus, i t  is  des i r ab le  

A t y p i c a l  t r a n s f e r  o r b i t  from an i n i t i a l  28" i nc l ina t ion  t o  a geosynchro- 
nous o r b i t  of 0" i n c l i n a t i o n  would requi re  approximately th ree  months with a 
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var i ab le  t h r u s t  ion  engine. During t h a t  t i m e  t h e  veh ic l e  would pass through 
a combined environment of vacuum, W photons, e lec t rons ,  and protons. While 
the  W rad ia t ion  would remain constant i n  t i m e  (except during periods i n  the  
e a r t h ' s  shadow) and spectral content,  t h e  e l ec t ron  and proton environments vary 
continuously with t i m e ,  pos i t i on ,  and a l t i t u d e  both i n  i n t e n s i t y  and energy 
spectrum. 
and must be determined by in t eg ra t ion  using de ta i l ed  f l u x  maps and the  actual 
o r b i t a l  h i s t o r y  of t h e  vehicle.  However, f o r  purposes of i l l u s t r a t i o n  f i g u r e  1 
shows a s impl i f ied  average of t h e  in tegra ted  f l u x  of e lec t rons  and protons as 
a function of a l t i t u d e  f o r  a s i n g l e  inc l ina t ion .  

The a c t u a l  environment v a r i e s  with each o r b i t  and during each o r b i t  

A s  a genera l  r u l e  t h e  proton damage dominates f o r  a l t i t u d e s  below 8,000 t o  
10,000 n a u t i c a l  m i l e s  and the  e l ec t ron  damage dominates above t h a t  a l t i t u d e  
( subjec t  t o  v a r i a t i o n  during s o l a r  events).  

FOP LEO t o  GEO o r b i t a l  t r a n s f e r  missions most of t he  heavy damage t o  s o l a r  
cells is  incurred ea r ly  i n  t h e  mission where protons and W, and combinations 
of protons, e lec t rons ,  and UV are present.  The proton damage, p a r t i c u l a r l y  
the  s o f t e r  spec t r a  t y p i c a l  of about 6,000 nmi produces a complex damage scenar io  
in s ide  t h e  s o l a r  cell.  Figure 2 shows a t y p i c a l  proton spectrum i n s i d e  t h e  
s o l a r  ce l l  as t h e  inc ident  spectrum i s  modified by sh ie ld ing .  A s  can be seen 
f o r  cover g lasses  on the  order of 2 t o  3 m i l s  th ick  (.012 t o  .018 gm/cm2 
sh ie ld ing)  t h e  proton spectrum inc ident  on t h e  s o l a r  cel l  (at the  in t e r f ace )  
is  q u i t e  r i c h  i n  protons of energy less than 2 MeV. P a r t i c l e s  of these  energies 
are very damaging t o  s o l a r  cells. Figure 3 shows t h e  type of grad ien t  i n  damage 
produced across a cel l  due t o  t h e  proton energy spec t ra .  For example, t he  lower 
energy protons s top  shor t ly  a f t e r  en ter ing  t h e  c e l l  and produce heavy loca l ized  
damage near t he  ends of t h e i r  tracks.  The subsequent drop i n  i n t e n s i t y  and 
ef fec t iveness  of t h e  proton f l u x  causes the  relative amount of damage t o  de- 
c rease  as the  depth i n t o  t h e  c e l l  increases.  T t  should a l s o  be pointed out 
t h a t  the  types of defec ts  produced and the  r e l a t i v e  concentration of each type 
of defec t  produced w i l l  a l s o  vary across  the  c e l l  s ince  these  f a c t o r s  are 
energy dependent. 

These observations are important not only f o r  p red ic t ing  damage level but  
f o r  t h e i r  impact on the  annealing behavior of t h e  cells s ince  the  annealing 
k i n e t i c s  are d i f f e r e n t  f o r  the d i f f e r e n t  defec t  species.  

I n  order t o  b e t t e r  assess t h e  impact of these  environments an experimental 
study of low energy (E 1.5 MeV) proton damage and annealing i n  both s i l i c o n  
and gallium arsenide  s o l a r  cells has been performed a t  Boeing. 
has been reported i n  d e t a i l  elsewhere ( r e f .  1) and, therefore  is  only sum- 
marized here  as i t  pe r t a ins  t o  evaluating missions i n  low and intermediate 
a l t i t u d e  o r b i t s .  

This program 

Low Enerw Proton Damage and Annealing 

Experiments have been performed i n  which 2 ohm-cm N/P MAR coated s i l i c o n  
s o l a r  cells were i r r a d i a t e d  with protons of energy .25 and 1.5 MeV. The ee l l s  
were i r r a d i a t e d  a t  t he  Boeing Dynamitron acce lera tor .  
cells each w e r e  exposed t o  3 x 1011 and 3 x 1012 p/cm2 respec t ive ly  with 1.5 

Two groups of 12 s i l i c o n  
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MeV protons and one group of 12 cells t o  7 x 10l1 p/cm2 0.25 MeV protons. 
Isochronal and isothermal anneals were then performed t o  observe t h e  annealing 
behavior of t h e  cells. A s i m i l a r  program w a s  conducted with GaAs c e l l s  with 
one group of two each exposed t o  2 x 10x3 p/cm2 a t  1.5 MeV energy and one group 
exposed t o  1 x 1012 p/cm2 a t  0.25 MeV energy. The r e s u l t s  of t h e  isochronal 
annealing experiments f o r  both types of c e l l s  are shown i n  f igu re  4 .  
curves show evidence of t h e  break up of several defec t  spec ies  i n  the  s i l i c o n  
cells. .Some of these  spec ies  appear t o  be products of new combinations of 
defec ts  and impur i t ies  pa i r ing  as t h e  o r i g i n a l  defec ts  break up and t h e i r  
cons t i tuents  migrate away from t h e i r  o r i g i n a l  sites ( r e f s .  1, 2). The new 
species usua l ly  have d i f f e r e n t  e l e c t r i c a l  degradation proper t ies  from t h e i r  
predecessors and are considerably d i f f e r e n t  i n  t h e i r  annealing proper t ies .  
The relative amounts of t h e  d i f f e r e n t  defec t  spec ies  a l s o  appear  to be r a t h e r  
s t rong  functions of t he  inc ident  proton energy. 

These 

The isochronal anneals of t h e  GaAs c e l l s  a l s o  show s t r u c t u r e  ind ica t ing  
However, they do not show t h e  re- 

This is probably ind ica t ive  
the  annealing of mul t ip le  defec t  species.  
verse  annealing as i n  t h e  case of s i l i c o n  cells. 
of less i n t e r a c t i o n  between the  defec ts  and impur i t ies  i n  GaAs cells. 

Figure 5 shows t y p i c a l  lsothermal annealing behavior f o r  both s i l i c o n  and 
GaAs c e l l s .  Tn both cases, the  curves show evidence of t h e  recovery of multi- 
p l e  species havfng d i f f e r e n t  annealing t i m e  constants corroborating t h e  ob- 
se rva t ions  of t h e  isochronal anneals. 

Other s i g n i f i c a n t  observations of t h i s  study were t h a t  1 )  i n  the  s i l i c o n  
cells both the  rate and ex ten t  of recovery are functions of proton energy and 
of damage l e v e l  or  fluence,  2) recovery appears t o  be more rapid and more 
complete when the  cells are heated rap id ly  above 400"C, with  recovery levels 
of 96 percent of maximum power i n  t E m e s  on t h e  order of f l v e  minutes being 
typ ica l ,  3) t h e  rate and ex ten t  of recovery under a given set of conditions 
va r i e s  widely between cells with very similar i n i t i a l  electrical c h a r a c t e r i s t i c s  
and r ad ia t ion  degradation responses as a function of fluence. For t h e  GaAs 
cells t h e  rate and ex ten t  of recovery was a l s o  a function of inc ident  proton 
energy. 

Combined Environments of Electrons,  
Protons, and W Radiation 

Another complexity t h a t  needs t o  be considered f o r  o r b i t s  < 10,000 nmi is 
t h a t  of s y n e r g i s t i c  e f f e c t s  between simultaneous environments OF u"v, e lec t rons ,  
and protons. Tn the  pas t ,  a t  least th ree  experiments have been performed on 
s o l a r  c e l l s  wlth combined environments of these  th ree  cons t i tuents .  These 
experiments are summarized i n  t a b l e  1. 

The f i r s t  two experiments summarlzed i n  t a b l e  1 are i n  general  agreement 
i n  that they both experienced combinations of e lec t rons ,  protons, and W radia- 
t i o n  and both showed less damage than would be expected f o r  t h e  l i n e a r  sum of 
the  defec ts  produced by t h e  p a r t i c u l a t e  beam taken separa te ly .  A t y p i c a l  d i f -  
ference is  i l l u s t r a t e d  i n  f i g u r e  6 .  However, t h e  t h i r d  experiment summarized 
i n  t a b l e  1 showed s i g n i f i c a n t l y  d i f f e r e n t  r e s u l t s  i n  t h a t  a r a t h e r  s t rong  
synergism was  reported between the  e l ec t ron  and proton environments as i l l u s -  
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t r a t e d  i n  f i g u r e  7. I f  one examines t h e  conditions of t h e  th ree  experiments 
some s i g n i f i c a n t  d i f fe rences  are noted t h a t  could account f o r  t h e  seemingly 
conf l i c t ing  r e s u l t s .  
and proton environments w a s  a r a t h e r  s t rong  function of t h e  r a t i o  of e l ec t ron  
and proton f luxes .  I n  the f i r s t  two experiments t h e  proton beams w e r e  spread 
over t he  sample f i e l d s  by r a s t e r ing ,  o r  scanning, t h e  beams i n  t h e  vertical 
and ho r i zon ta l  planes. 
higher than t h e  average number reported,  o r  a much lower r a t i o  of e l ec t ron  f l u x  
t o  proton f l u x  than w a s  reported. Looking a t  the  r e s u l t s  of t h e  t h i r d  experi- 
ment, a low r a t i o  of e l ec t rons  t o  protons shows l i t t l e  o r  no synergism s o  t h a t  
t he  r e s u l t s  may i n  f a c t  not be  i n  c o n f l i c t  a t  a l l .  
out t h a t  i n  both the  f i r s t  and t h i r d  experiments l i n e a r  acce le ra to r s  w e r e  used 
t o  supply t h e  e lec t rons .  
pulsed mode but do not supply a contrnuous beam of e lec t rons .  I n  t h e  second 
experiment a continuous f i e l d  of s ca t t e r ed  Cornpton e lec t rons  w a s  present 
bu t  the  proton beam was r a s t e red ,  Thus i t  can be concluded t h a t  none of t h e  
experiments have r e a l l y  been a s a t i s f a c t s r y  simulation. 

I n  the  t h i r d  experiment t h e  synergism between the  e l ec t ron  

Thls r e su l t ed  i n  an instantaneous proton f l u x  much 

It should be f u r t h e r  pointed 

These machimes operate i n  a s i n g l e  o r  repet i t ive 

Summary of Impact on Mission Performance 

I f  one considers t h e  synergism of f i g u r e  7 a poss ib le  mechanism could be 
t h a t  a high l e v e l  of e l ec t rons  during the  proton exposure tends t o  break up t h e  
i n i t i a l  defec t  complexes produced by t h e  protons allowing the  formation of more 
e l e c t r i c a l l y  degrading complexes i n  much t h e  same way observed f o r  t h e  reverse  
annealing of low energy proton damage a t  moderate temperatwe. I f  t h i s  is  t h e  
t r u e  mechanism, o r  i f  d i f f e r e n t  defec t  species are being formed, then the  
annealing k i n e t i c s  of t h e  damage would be a l t e r e d  considerably. For example, 
it w a s  observed i n  the  low energy proton damage annealing experiments t h a t  
when c e l l s  w e r e  rap id ly  heated above 400°C then less of t h e  secondary or  
daughter defec ts  w e r e  produced during the  annealing process and t h e  annealing 
progressed more rap id ly  and completely than a t  lower temperatures or  during 
isochronal anneals which slowly stepped t h e  cells t o  > 4OO0C through a series 
of incremental temperature s t eps .  Thus, i f  t he  combined environments produce 
the  equivalent of t h e  reverse anneal observed i n  t h e  isochronal anneal experi- 
ments then both the  rate and t h e  ex ten t  of f i n a l  annealing would be a f fec ted .  

Thus, i t  can be seen t h a t  t h e  complexity of t h e  damage produced across 
the  thickness of a s o l a r  c e l l  by a spectrum of low energy protons and t h e  
p o s s i b i l i t y  of synergisms can r a d i c a l l y  a l ter  t h e  behavior of a r r ays  during 
long t e r m  missions i n  intermediate and l o w  a l t i t u d e  o r b i t s  both i n  terms of 
i n i t i a l  degradation and i n  t h e  f e a s i b i l i t y  of annealing of t h e  damage. 

CONCLUSIONS 

From t h e  above observations i t  is concluded t h a t  low-energy proton damage 
and annealing is  not s u f f i c i e n t l y  understood o r  characterized t o  permit ac- 
cu ra t e  engineering evaluations of large-scale power supply performance i n  
o r b i t s  < 10,000 nmi. 'More work is required i n  t h e  area of understanding b a s i c  
mechani&s of annealing and the  r e s u l t s  of r e p e t i t i v e  i r rad ia te -annea l  cycles.  
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It is also concluded that the area of synergisms between electron, low-energy 
proton, and UV environments has not been adequately explored to permit cer- 
tainty in engineering design of power systems and annealing cycles to optimize 
mission performance. 
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